这样算吧,由于有三个零点,而且定义域是R,所以我可以假设这个函数是三次多项式,设f(x)=ax^3+bx^2+cx+d;
由f(x+1)=-f(-x),代入多项式可得:
a(x+1)^3+b(x+1)^2+c(x+1)+d=-(-ax^3+bx^2-cx+d)
即ax^3+(3a+b)x^2+(3a+2b+c)x+a+b+c+d=ax^3-bx^2+cx-d
所以可得两个方程组
3a+2b=0 (1)
a+b+c+2d=0 (2)
而且由于f(x+1)=-f(-x)易知道f(1/2)=0;
代进去可得1/8a+1/4b+1/2c+d=0 (3)
由于这三个方程组中(2)和(3)是等价的,消不去3个未知数且解不出那四个未知数,但是该函数f(x)必须满足(1)和(2),所以再去特殊情况,d=0,解得b=-3/2a c=1/2a
代入原来的多项式可得f(x)=ax^3-3/2ax^2+1/2ax=ax(x-1)(x-1/2)
而且可验证该多项式是满足题目所有条件的,所以可得零点为0,1,1/2,之和即为3/2
不知道期间计算是否出错,但是思路是这样的,而且采取的只是特殊的方法.