f(n)=1+1/2+1/3+1/4+…………+1/(3n-1),求f(n)-f(n-1)
2个回答
f(n-1)=1+1/2+1/3.+1/(3n-4)
f(n)-f(n-1)=1/(3n-1)+1/(3n-2)+1/(3n-3)
相关问题
已知f(n)=3n^2-3n+1求证1/f(1)+1/f(2)+1/f(3)+……1/f(n)<4/3
f(1)+f(2)+f(3)+...+f(n)=n/n+1.求f(n)
f(n)=1+1/2+1/3+1/4...+1/n,求证f(2∧n)>n/2,n∈N+
设f(n)=1+1/2+1/3+...+1/(3n-1)(n属于N+),那么f(n+1)-f(n)=?
f(n)=1+[1/2]+[1/3]+…+[1/n](n∈N*),经计算得f(2)=[3/2],f(4)>2,f(8)>
设f(n)=1+1/2+1/3+……+1/n(n∈正整数),求证:f(1)+f(2)+……+f(n-1)=[f(n)-1
已知数列{f(n)}:f(1)=1,f(2)=4,当n=3,4,5,…时,f(n)=3*f(n-1)-f(n-2).
设f(n)=1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n(n∈N),那么f(n+1)-f(n)等于___
f(n)=1+1/2+1/3+.+1/(3n-1)(n属于正整数),那么f(n+1)-f(n)=
f(x)=1/(4x+2),求f(0)+f(1/n)+f(2/n)+……+f(n—2/n)+f(n—1/n)+f(1)的