对方程
F(x-mz,y-nz) = 0
两端求微分,得
F1*(dx-mdz)+F2*(dy-ndz) = 0,
解出
dz = [F1/(mF1+nF2)]dx+[F2/(mF1+nF2)]dy,
即
Dz/Dx =F1/(mF1+nF2),Dz/Dy = F2/(mF1+nF2),
代入
m(Dz/Dx)+n(Dz/Dy) = ……
即得.
对方程
F(x-mz,y-nz) = 0
两端求微分,得
F1*(dx-mdz)+F2*(dy-ndz) = 0,
解出
dz = [F1/(mF1+nF2)]dx+[F2/(mF1+nF2)]dy,
即
Dz/Dx =F1/(mF1+nF2),Dz/Dy = F2/(mF1+nF2),
代入
m(Dz/Dx)+n(Dz/Dy) = ……
即得.