f1(x)=(sinx-1)/(2sinx+3)=1/2-(5/2)/(2sinx+3),
看成1/2-(5/2)/u,与u=2sinx+3的复合函数,u∈[1,5],
1/2-(5/2)/u是增函数,它的值域是[-2,0],为所求.
f2(x)=(x^2-1)/(x^2+1)=1-2/(x^2+1),
仿上,它的值域是[-1,1).
f3(x)=(a^x-1)/(a^x+1)=1-2/(a^x+1)(a>0,a≠1),
a^x+1>1,
∴f3(x)的值域是(0,1).
这3个函数都可以化作a+k/u的形式,其中a,k是常数,k