在Rt△ACD中,∠C=90°,AD=5,AC=4,
根据勾股定理得:CD=√(AD²-AC²)=3
∴CD/AD=3/5,
∴sin∠CAD=3/5 cos∠CAD=4/5,
又AD为∠BAC的平分线,
∴∠CAD=∠BAD,即∠CAB=2∠CAD,
则∠B=90°-∠CAB=90°-2∠CAD;
cos(∠B)=cos(90°-2∠CAD)=sin(2∠CAD)=2sin(∠DAC)cos(∠DAC)=2*(3/5)(4/5) =24/25;
∠B=arccos(24/25)≈16°
在Rt△ACD中,∠C=90°,AD=5,AC=4,
根据勾股定理得:CD=√(AD²-AC²)=3
∴CD/AD=3/5,
∴sin∠CAD=3/5 cos∠CAD=4/5,
又AD为∠BAC的平分线,
∴∠CAD=∠BAD,即∠CAB=2∠CAD,
则∠B=90°-∠CAB=90°-2∠CAD;
cos(∠B)=cos(90°-2∠CAD)=sin(2∠CAD)=2sin(∠DAC)cos(∠DAC)=2*(3/5)(4/5) =24/25;
∠B=arccos(24/25)≈16°