证明 :因P为∠AOB平分线上一点,PA⊥OA,PB⊥OB,
所以,PA=PB,
所以,∠PAB=∠PBA,
因 P为 ∠AOB平分线上一点,所以 ∠AOP=∠BOP,
在△AOP与△BOP中,
∠OAP=∠OBP=90°,
∠AOP=∠BOP,
OP边公用
所以△AOP≌△BOP
所以OA=OB,又因OP平分∠AOB,
所以OP垂直平分AB.
证明 :因P为∠AOB平分线上一点,PA⊥OA,PB⊥OB,
所以,PA=PB,
所以,∠PAB=∠PBA,
因 P为 ∠AOB平分线上一点,所以 ∠AOP=∠BOP,
在△AOP与△BOP中,
∠OAP=∠OBP=90°,
∠AOP=∠BOP,
OP边公用
所以△AOP≌△BOP
所以OA=OB,又因OP平分∠AOB,
所以OP垂直平分AB.