1、|向量AB|=|(cosθ-3,sinθ+√3)|=√13,所以|=(cosθ-3)^2+(sinθ+√3)^2=13,得到√3sinθ=3cosθ,有tanθ=√3;
2、△AOB面积的最大值=(1/2)|OA|×|OB|sinθ,而|OA|=2√3,|OB|=1,那就只要求两向量的夹角的最大值即可.①可以作图发现夹角的范围,确定其最大值;②另外,可以设两向量夹角为α,则cosα=(向量OA点乘向量OB)/(|OA|乘|OB|),所以cosα=3cosθ-√3sinθ=2√3cos(θ+30°),θ∈[0°,90°],所以sinα的最大值为1,从而、△AOB面积的最大值√3.