向量PA=OA-OP=OA-(xOA+yOB)/2=(1-x/2)OA-(y/2)OB,
向量AB=OB-OA,
由向量PA=cAB得(1-x/2)OA-(y/2)OB=-cOA+cOB,
非零向量OA,OB不共线,
∴{1-x/2=-c,-y/2=c},
消去c 得1-x/2=y/2,
化简得y=-x+2,为所求.
向量PA=OA-OP=OA-(xOA+yOB)/2=(1-x/2)OA-(y/2)OB,
向量AB=OB-OA,
由向量PA=cAB得(1-x/2)OA-(y/2)OB=-cOA+cOB,
非零向量OA,OB不共线,
∴{1-x/2=-c,-y/2=c},
消去c 得1-x/2=y/2,
化简得y=-x+2,为所求.