解①sin2a=3/4
②sin^4a+cos^4a
=(sin^2a+cos^2a)^2-2sin^2acos^2a
=1-1/2×2×2sin^2acos^2a
=1-1/2×2sinacosa×2sinacosa
=1-1/2sin^2(2a)
=1-1/2×(3/4)^2
=1-1/2×9/16
=1-9/32
=23/32
③
cos2a=±√(1-sin^2a)
=±√(1-(3/4)^2)
=±√7/4.
解①sin2a=3/4
②sin^4a+cos^4a
=(sin^2a+cos^2a)^2-2sin^2acos^2a
=1-1/2×2×2sin^2acos^2a
=1-1/2×2sinacosa×2sinacosa
=1-1/2sin^2(2a)
=1-1/2×(3/4)^2
=1-1/2×9/16
=1-9/32
=23/32
③
cos2a=±√(1-sin^2a)
=±√(1-(3/4)^2)
=±√7/4.