各项都是正数的等比数列{an}的公比q不等于1
a2=a1q a3=a1q^2
a2,二分之一a3,a1成等差数列,
a1q^2=a1q+a1
q^2-q-1=0
q=(1+√5)/2或q=(1-√5)/2(设)
(a3+a4)/(a4+a5)
=(a1q^2+a1q^3)/(a1q^3+a1q^4)
=1/q
=2/(√5+1)
=(√5-1)/2
各项都是正数的等比数列{an}的公比q不等于1
a2=a1q a3=a1q^2
a2,二分之一a3,a1成等差数列,
a1q^2=a1q+a1
q^2-q-1=0
q=(1+√5)/2或q=(1-√5)/2(设)
(a3+a4)/(a4+a5)
=(a1q^2+a1q^3)/(a1q^3+a1q^4)
=1/q
=2/(√5+1)
=(√5-1)/2