Sn=2n²+pn,则当n≥2时,
有an=Sn-S(n-1)=[2n²+pn]-[2(n-1)²+p(n-1)]=4n+p-2.
因a7=4×7+p-2=11,所以p=-15,
从而an=4n-17,
则ak=4k-17,a(k+1)=4(k+1)-17,
算出k>21/4=5.25
k最小值是6
Sn=2n²+pn,则当n≥2时,
有an=Sn-S(n-1)=[2n²+pn]-[2(n-1)²+p(n-1)]=4n+p-2.
因a7=4×7+p-2=11,所以p=-15,
从而an=4n-17,
则ak=4k-17,a(k+1)=4(k+1)-17,
算出k>21/4=5.25
k最小值是6