已知单调递增的等比数列{an}满足a1+a2+a3=14,且a2+1是a1、a3的等差中项.

1个回答

  • (1)

    an=a1.q^(n-1) ; q>1

    a1+a2+a3=14

    a1(1+q+q^2)=14 (1)

    (a2+1)是a1、a3的等差中项

    a1+a3=2(a2+1)

    a1(1+q^2) =2(a1q+1)

    a1(1-2q+q^2) = 2 (2)

    (1)/(2)

    1+q+q^2=7(1-2q+q^2)

    2q^2-5q+2=0

    (2q-1)(q-2)=0

    q=2

    from (1)

    a1(1+2+4)=14

    a1=2

    an =2^n

    (2)

    let

    S = 1.2^1+2.2^2+...+n.2^n (1)

    2S = 1.2^2+2.2^3+...+n.2^(n+1) (2)

    (2)-(1)

    S =n.2^(n+1) -(2+2^2+...+2^n)

    =n.2^(n+1) -2(2^n-1)

    bn=an.logan

    =n.2^n

    Sn=b1+b2+...+bn

    =S

    =n.2^(n+1) -2(2^n-1)

    =2+ (2n-2).2^n

    (3)

    S(n+1)-2 ≤ 8n^3.λ

    To find min λ

    Solution:

    S(n+1)-2

    = 4n.2^n

    S(n+1)-2 ≤ 8n^3.λ

    4n.2^n ≤ 8n^3.λ

    λ ≥ 2^(n-1) / n^2

    min λ at n=3

    min λ = 4/9