两边取对数得: lnx+f(y)=y
两边对x求导:1/x+y'f'(y)=y',
得:y'=1/[x(1-f'(y))]
再对x求导:y"=-1/[x(1-f'(y))]^2* [1-f'(y)-xy'f"(y)]
代入y'得:y"=-1/[x(1-f'(y))]^2* [1-f'(y)-f"(y)/(1-f'(y))]
=[f"(y)-(1-f'(y))^2]/[x^2(1-f'(y))^3]
两边取对数得: lnx+f(y)=y
两边对x求导:1/x+y'f'(y)=y',
得:y'=1/[x(1-f'(y))]
再对x求导:y"=-1/[x(1-f'(y))]^2* [1-f'(y)-xy'f"(y)]
代入y'得:y"=-1/[x(1-f'(y))]^2* [1-f'(y)-f"(y)/(1-f'(y))]
=[f"(y)-(1-f'(y))^2]/[x^2(1-f'(y))^3]