1/(log3 √15)+1/(log5 √15)
=1/(1/2*log3 15)+1/(1/2*log5 15)
=2/(log3 15)+2/(log5 15)
=2/[log3 (3*5)]+2/[log5 (3*5)]
=2/[log3 3 +log3 *5]+2/[log5 3 +log5 5]
=2/[1+log3 *5]+2/[1+log5 3]
=2/[1+log3 *5]+2/[1+1/log3 5]
=2/[1+log3 *5]+2log3 5/[1+log3 5]
=[2+2log3 5]/[1+log3 5]
=2[1+log3 5]/[1+log3 5]
=2