运用运算律计算:1/x+y+z*(1/x+1/y+1/z)×1/xy+yz+zx*1/xy+1/yz+1/zx

1个回答

  • 你的表达可能有点问题,是不是想求:

    [1/(x+y+z)](1/x+1/y+1/z)[1/(xy+yz+zx)][1/(xy)+1/(yz)+1/(zx)]?

    若是这样,则方法如下:

    ∵1/x+1/y+1/z=(yz+zx+xy)/(xyz),

    ∴(1/x+1/y+1/z)[1/(xy+yz+zx)]=1/(xyz).

    ∵1/(xy)+1/(yz)+1/(zx)=(z+x+y)/(xyz),

    ∴[1/(x+y+z)])][1/(xy)+1/(yz)+1/(zx)]=1/(xyz).

    ∴原式=1/(xyz)^2.

    注:若原题不是我所猜测的那样,则请你补充说明.