你的表达可能有点问题,是不是想求:
[1/(x+y+z)](1/x+1/y+1/z)[1/(xy+yz+zx)][1/(xy)+1/(yz)+1/(zx)]?
若是这样,则方法如下:
∵1/x+1/y+1/z=(yz+zx+xy)/(xyz),
∴(1/x+1/y+1/z)[1/(xy+yz+zx)]=1/(xyz).
∵1/(xy)+1/(yz)+1/(zx)=(z+x+y)/(xyz),
∴[1/(x+y+z)])][1/(xy)+1/(yz)+1/(zx)]=1/(xyz).
∴原式=1/(xyz)^2.
注:若原题不是我所猜测的那样,则请你补充说明.