求下列函数在指定区间内的最大与最小值

1个回答

  • 求导!

    依题意,f(x)的导函数为f’(x)=2x+(54/x^2),x∈(-∞,0)

    令f’(x)=0,则2x+(54/x^2)=0,x=-3

    所以x<-3时,x^3<-27,2x^3<-54,2x<-54/x^2,2x+(54/x^2)<0,f’(x)<0

    同理,当0>x>-3时,f’(x)>0

    所以,f(x)在(-∞,-3)上单调递减,在(-3,0)上单调递增,最小值在x=-3上取得,为(-3)^2-(54/-3)=9+18=27

    再分别求x→0和x→-∞时的极限;其实这时就可以知道根本不用求最大值,因为定义域是开区间,无论哪一边的极限大,都是取不到的,所以这个函数没有最大值