对于怎样的整数n,才能由f(sinx)=sin nx推出f(cosx)=cos nx 急

2个回答

  • 因为 f(sin x)=sin nx,

    所以 f[ sin (x +pi/2) ]=sin [ n (x +pi/2) ].

    即 f(cos x)=sin (nx +n/2 *pi)

    =sin (nx) cos (n/2 *pi) +cos (nx) sin (n/2 *pi).

    要使 f(cos x) =cos nx ,比较系数得

    cos (n/2 *pi)=0,

    sin (n/2 *pi)=1.

    所以 n/2 *pi =pi/2 +2k *pi,k为整数.

    所以 n=4k+1,k为整数.

    即 当n=4k+1,k为整数时,有

    f(cos x) =cos nx.

    = = = = = = = = =

    待定系数法.用sin (x +pi/2) =cos x 比较简单,用sin (pi/2 -x) =cos x 就麻烦一点.

    = = = = = = = = =

    解法2:因为 f(sin x) =sin nx,

    所以 f[ sin (x +pi/2) ] =sin [ n (x +pi/2) ].

    即 f(cos x) =sin (nx +n/2 *pi).

    i) 若 n=4k,k为整数,

    则 f(cos x) =sin (nx +2k *pi)

    =sin (nx).

    ii) 若 n=4k+1,k为整数,

    则 f(cos x) =sin (nx +2k *pi +pi/2)

    =sin (nx +pi/2)

    =cos (nx).

    iii) 若 n=4k+2,k为整数,

    则 f(cos x) =sin (nx +2k *pi +pi)

    =sin (nx +pi)

    = -sin (nx).

    iv) 若 n=4k+3,k为整数,

    则 f(cos x) =sin (nx +2k *pi +3pi/2)

    = sin (nx +3pi/2)

    = -cos (nx).

    综上,当且仅当 n=4k+1 时,

    f(cos x) =cos nx.

    = = = = = = = = =

    以上计算可能有误,你最后检查一下.

    分类讨论.

    这种方法,诱导公式要很熟才行,否则容易出错.