假设A为n阶方阵,B为m阶方阵
设C*= [ D H ]
[ F G ]
|C|=|A||B|
根据伴随矩阵的性质有:
CC*=C*C=|C|E=|A||B|E
CC*=[ A 0 ] [ D H ] = [ AD AH ] = [ |AB|En 0 ]
[ 0 B ] [ F G ] [ BF BG ] [ 0 |AB|Em]
比较各项得:AD=|AB|E,AH=0,BF=0,BG=|AB|E
于是H=0,F=0
从AD=|AB|E可得到A*AD=A*|AB|E
|A|D=A*|AB|E,
D=|B|A*
同理BG=|AB|E得到B*BG=B*|AB|E
G=|A|B*
故C*=[ |B|A* 0 ]
[ 0 |A|B* ]