这个跟你问的差不多
可以使得a>0,也可以不管
方法一:
-sinx+(√3)cosx
=-2*[sinx*(1/2)-(√3/2)cosx]
=-2[sinx*cos(π/3)-cosx*sin(π/3)]
=-2sin(x-π/3)
方法二:
-sinx+(√3)cosx
=2*[sinx*(-1/2)+(√3/2)cosx]
=2[sinx*cos(2π/3)+cosx*sin(2π/3)]
=2sin(x+2π/3)
这个跟你问的差不多
可以使得a>0,也可以不管
方法一:
-sinx+(√3)cosx
=-2*[sinx*(1/2)-(√3/2)cosx]
=-2[sinx*cos(π/3)-cosx*sin(π/3)]
=-2sin(x-π/3)
方法二:
-sinx+(√3)cosx
=2*[sinx*(-1/2)+(√3/2)cosx]
=2[sinx*cos(2π/3)+cosx*sin(2π/3)]
=2sin(x+2π/3)