设x-1\x=3,求x^10+x^8+x^2+1\x^10+x^6+x^4+1的值,

1个回答

  • x-1/x=3

    =>x^2+1/x^2=(x-1/x)^2+2=3^2+2=11

    (x+1/x)^2=(x-1/x)^2+4=9+4=13

    =>x+1/x=√13

    =>x^3+1/x^3=(x+1/x)(x^2+1/x^2-1)=√13*(11-1)=10√3

    =>x^4+1/x^4=(x^2+1/x^2)^2-2=11^2-2=119

    (x^10+x^8+x^2+1)/x^10+x^6+x^4+1

    =(x^6(x^4+1/x^4)+x^4(x^4+1/x^4))/(x^7(x^3+1/x^3)+x^3(x^3+1/x^3))

    =119(x^6+x^4)/(10√3*(x^7+x^3))

    =119x^5(x+1/x)/(10√3x^5(x^2+1/x^2))

    =119*3/(10√3*11)

    =119√3/110