解题思路:由等比数列的性质可得,a1a3=a22=36,a2(1+q2)=60,从而可求公比q,然后把q得值代入到Sn>400进行求解.
由等比数列的性质可得,a1a3=a22=36,a2(1+q2)=60,a2>0,a2=6,1+q2=10,q=±3,
当q=3时,a1=2,Sn=
2(1−3n)
1−3>400,3n>401,n≥6,n∈N;
当q=-3时,a1=−2,Sn=
−2[1−(−3)n]
1−(−3)>400,(−3)n>801,n≥8,n为偶数;
∴n≥8,且n为偶数.
点评:
本题考点: 等比数列的性质.
考点点评: 本题主要考查了等比数列的性质的应用,属于基本公式得应用,属于基础试题.