1.连接AC,交BD于F,连接EF.F是AC中点,E是PA中点,EF是△PAC中位线,EF平行于PC,PC⊥平面ABCD,EF⊥平面ABCD.直线EF过平面EDB.所以,平面EDB⊥平面ABCD
(2)过A点在平面ABE中作AF⊥BE交BE于点F.
连接OF,
∵平面EDB⊥平面ABCD
∴AO⊥平面EDB.
∴AO⊥BE(BE∈平面EDB)
又根据AF⊥BE,
∴BE⊥平面AFO.
即BE⊥OF(OF∈平面AFO)
∴∠AFO是平面ABE和平面BDE的平面角,
即二面角A-EB-D就是∠AFO.
正切值=OA/OF.
又∵PC=a,ABCD是边长为a的菱形,
∴OA=OB=a/2.,OE=a/2.
在直角三角形OBE中,OB=OE=a/2,
所以斜边BE上高OF=√2/4a.
∴二面角A-EB-D平面角∠AFO的正切值=OA/OF.=a/2 /√2a/4=√2.