原题无法分解,是不是少抄一个1啊?
(x^5+x^4+x^3+x^2+x+1)^2-x^5
因为x^6-1=(x-1)(x^5+x^4+x^3+x^2+x+1)
所以x^5+x^4+x^3+x^2+x+1=(x^6-1)/(x-1)
所以
(x^5+x^4+x^3+x^2+x+1)^2-x^5
=(x^6-1)^2/(x-1)^2-x^5
=[x^12-2x^6+1-x^7+2x^6-x^5]/(x-1)^2
=[(x^7-1)(x^5-1)]/(x-1)^2
=[(x^7-1)/(x-1)][(x^5-1)/(x-1)]
=(x^6+x^5+x^4+x^3+x^2+x+1)(x^4+x^3+x^2+x+1)