1/a+1/b=a+b/ab≥4(a+b)/(a+b)^2=4/a+b
同理.
1/a+1/c=a+c/ac≥4(a+c)/(a+c)^2=4/a+c
1/c+1/b=c+b/cb≥4(c+b)/(c+b)^2=4/c+b
相加
2(1/a+1/b+1/c)≥4/(a+b)+4/(b+c)+4/(a+c)
所以
1/a+1/b+1/c≥2/(a+b)+2/(b+c)+2/(a+c)
1/a+1/b=a+b/ab≥4(a+b)/(a+b)^2=4/a+b
同理.
1/a+1/c=a+c/ac≥4(a+c)/(a+c)^2=4/a+c
1/c+1/b=c+b/cb≥4(c+b)/(c+b)^2=4/c+b
相加
2(1/a+1/b+1/c)≥4/(a+b)+4/(b+c)+4/(a+c)
所以
1/a+1/b+1/c≥2/(a+b)+2/(b+c)+2/(a+c)