证明:∵sinθ sinα cosθ成等差数列∴2sina=sinθ+cosθ,
∵sinθ sinβ cosθ为等比数列,∴sin^2β=sincθosθ,
∴左边=2cos2a=2[1-2(sina)^2]=2-4(sina)^2=2-(sinθ+cosθ)^2=2-(1+2sinθcosθ)=1-2sinθcosθ
=1-2(sinβ)^2=cos2β=右边
证明:∵sinθ sinα cosθ成等差数列∴2sina=sinθ+cosθ,
∵sinθ sinβ cosθ为等比数列,∴sin^2β=sincθosθ,
∴左边=2cos2a=2[1-2(sina)^2]=2-4(sina)^2=2-(sinθ+cosθ)^2=2-(1+2sinθcosθ)=1-2sinθcosθ
=1-2(sinβ)^2=cos2β=右边