f(x)=cos^2x+2sinxcosx+3sin^2x
=(cos^2x+sin^2x)+2sinxcosx+2sin^2x
=1+2sinxcosx+2sin^2x
=1+sin2x+1-cos2x
=2+(sin2x-cos2x)
=2+√2(√2/2sin2x-√2/2cos2x)
=2+√2sin(x+π/4)
所以:
当x=2kπ+π/4时,函数有最大值=2+√2
当x=2kπ-3π/4时,函数有最小值=2-√2
f(x)=cos^2x+2sinxcosx+3sin^2x
=(cos^2x+sin^2x)+2sinxcosx+2sin^2x
=1+2sinxcosx+2sin^2x
=1+sin2x+1-cos2x
=2+(sin2x-cos2x)
=2+√2(√2/2sin2x-√2/2cos2x)
=2+√2sin(x+π/4)
所以:
当x=2kπ+π/4时,函数有最大值=2+√2
当x=2kπ-3π/4时,函数有最小值=2-√2