y = e^(xy) + tan(xy) y' = (y + xy')e^(xy) + (y+xy')sec^2(xy)
y' = ye^(xy) + xy'e^(xy) + ysec^2 (xy) +xy'sec^2 (xy)
y' [1-xe^(xy)-xsec^2(xy)] = y[e^(xy) + sec^2(xy)]
解出:
y' = y[e^(xy) + sec^2(xy)] / [1-xe^(xy)-xsec^2(xy)]
x - y +0.5siny = 0
dx - dy + 0.5cosy dy = 0 dy(0.5cosy - 1) +dx =0
dy = dx / (1 - 0.5cosy)
思路是:对等式两边同时对x求导数,遇到y 对x求导为:y‘
之后解出:y’ = f(x,y).要求dy :则:dy = f(x,y) dx.