sinα+cosα=√3/3
(sinα+cosα)^2=1/3
(sinα)^2+(cosα)^2+2sinαcosα=1/3
1+2sinαcosα=1/3
2sinαcosα=-2/3
sinαcosα=-1/3
tanα+cotα
=sinα/cosα+cosα/sinα
=[(sinα)^2+(cosα)^2]/sinαcosα
=1/sinαcosα
=1/(-1/3)
=-3
sinα+cosα=√3/3
(sinα+cosα)^2=1/3
(sinα)^2+(cosα)^2+2sinαcosα=1/3
1+2sinαcosα=1/3
2sinαcosα=-2/3
sinαcosα=-1/3
tanα+cotα
=sinα/cosα+cosα/sinα
=[(sinα)^2+(cosα)^2]/sinαcosα
=1/sinαcosα
=1/(-1/3)
=-3