设坐标分别为:P(x,y);A(x1,y1);B(x2,y2);C(x3,y3)
则有:
x=1/3[(1-λ)x1+(1-λ)x2+(1+2λ)x3=(x1+x2+x3)/3-(x1+x2-2x3)λ/3
y=1/3[(1-λ)y1+(1-λ)y2+(1+2λ)y3=(y1+y2+y3)/3-(y1+y2-2y3)λ/3
将λ消去可得:
y-(y1+y2+y3)/3=(y1+y2-2y3)/(x1+x2-2x3)*[x-(x1+x2+x3)/3]
所以,当x=(x1+x2+x3)/3时,y=(y1+y2+y3)/3.
因此,过重心.