主要的一些公式:
在△ABC中,C=90°,AB=c,AC=b,BC=a.
(1)三边之间的关系:a^2+b^2=c^2.(勾股定理)
(2)锐角之间的关系:A+B=90°;
(3)边角之间的关系:(锐角三角函数定义)
sinA=cosB=a/c ,cosA=sinB=b/c ,tanA=a/b .
在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边.
(1)三角形内角和:A+B+C=π.
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,
a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍
a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC.
三角形的面积公式:
(1)△= 1/2*a*ha=1/2*b*hb=1/2*c*hc(ha、hb、hc分别表示a、b、c上的高);
(2)△=1/2absinC=1/2bcsinA=1/2acsinB;
(3)△=a^2sinBsinC/2sin(B+C)=b^2sinCsinA/2sin(C+A)=c^2sinAsinB/2sin(A+B) ;
(4)△=2R^2sinAsinBsinC.(R为外接圆半径)
(5)△=abc/4R;
(6)△=根号[s(s-a)(s-b)(s-c)] ;s=(a+b+c)/2 ;
(7)△=r•s
解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形
解斜三角形的主要依据是:
设△ABC的三边为a、b、c,对应的三个角为A、B、C.
(1)角与角关系:A+B+C = π;
(2)边与边关系:a + b > c,b + c > a,c + a > b,a-b < c,b-c < a,c-a > b;
(3)边与角关系:
正弦定理 a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
余弦定理 a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC
它们的变形形式有:a=2RsinA,sinA/sinB=a/b,cosA=(b^2+c^2-a^2)/2bc.