五年级的题?感觉简单又难.
其实分好几种情况的;
A:当n是三的倍数时,比如3,6,9.或者说当n=3k,k=1,2,3.时
称的时候可以分成3等份,每份都是k,那么肯定可以确定其中一份是有质量异常的.
将范围缩小到称之前的1/3
B:当n除3余1,比如4,7,10...之类.或者说n=3k+1,k=1,2,3.时
分称三份,其中有两份是k,一份是k+1
当确定有质量异常的物品在k的份里面时,缩小的范围是k/(3k+1),当确定在k+1份里面时,缩小的范围是(k+1)/(3k+1)
C同样:当n除3余2,比如5,8,11...之类.或者说n=3k+2,k=1,2,3.时
分称三份,其中有两份是k+1,一份是k
当确定有质量异常的物品在k的份里面时,缩小的范围是k/(3k+2),当确定在k+1份里面时,缩小的范围是(k+1)/(3k+2)
--------------------
如果n趋于无穷大的.那么不管那种情况,缩小的范围趋于1/3