y/x+x/y=-2
设Y/X=A
则A+1/A=-2 ==>A^2+2A+1=0==>(A+1)^2=0 ==>A=-1
所以(2x^2+3xy-2y^2)/(x^2+xy-2y^2)=(2X-Y)(X+2Y)/((X+2Y)(X-Y))
=(2X-Y)/(X-Y)=X/(X-Y)+1=1/(1-Y/X)+1=1/(1-(-1))+1=3/2
y/x+x/y=-2
设Y/X=A
则A+1/A=-2 ==>A^2+2A+1=0==>(A+1)^2=0 ==>A=-1
所以(2x^2+3xy-2y^2)/(x^2+xy-2y^2)=(2X-Y)(X+2Y)/((X+2Y)(X-Y))
=(2X-Y)/(X-Y)=X/(X-Y)+1=1/(1-Y/X)+1=1/(1-(-1))+1=3/2