谁知道最早古人是怎么测算地球的半径的?

1个回答

  • 公元前三世纪时希腊天文学家厄拉多塞内斯(Eratosthenes,公元前276—194)首次测出了地球的半径.

    他发现夏至这一天,当太阳直射到赛伊城(今埃及阿斯旺城)的水井S时,在亚历山大城的一点A的天顶与太阳的夹角为7.2°(天顶就是铅垂线向上无限延长与天空“天球”相交的一点).他认为这两地在同一条子午线上,从而这两地间的弧所对的圆心角SOA就是7.2°.又知商队旅行时测得A、S间的距离约为5000古希腊里,他按照弧长与圆心角的关系,算出了地球的半径约为4000古希腊里.一般认为1古希腊里约为158.5米,那么他测得地球的半径约为6340公里.

    其原理为:

    设圆周长为C,半径为R,两地间的的弧长为L,对应的圆心角为n°.

    因为360°的圆心角所对的弧长就是圆周长C=2πR,所以1°的圆心角所对弧长是,即.于是半径为的R的圆中,n°的圆心角所对的弧长L为:

    当L=5000古希腊里,n=7.2时,

    古希腊里)

    化为公里数为:(公里).

    厄拉多塞内斯这种测地球的方法常称为弧度测量法.用这种方法测量时,只要测出两地间的弧长和圆心角,就可求出地球的半径了.

    近代测量地球的半径,还用弧度测量的方法,只是在求相距很远的两地间的距离时,采用了布设三角网的方法.比如求M、N两地的距离时,可以像图2那样布设三角点,用经纬仪测量出△AMB,△ABC,△BCD,△CDE,△EDN的各个内角的度数,再量出M点附近的那条基线MA的长,最后即可算出MN的长度了.

    通过这些三角形,怎样算出MN的长度呢?这里要用到三角形的一个很重要的定理——正弦定理.

    即:在一个三角形中,各边和它所对角的正弦的比相等.就是说,在△ABC中,有.

    在图2中,由于各三角形的内角已测出,AM的长也量出,由正弦定理即可分别算出:

    ∴MN=MB+BD+DN.

    如果M、N两地在同一条子午线上,用天文方法测出各地的纬度后,即可算出子午线1°的长度.法国的皮卡尔(Pi-card.J.1620—1682)于1669—1671年率领他的测量队首次测出了巴黎和亚眠之间的子午线的长,求得子午线1°的长约为111.28公里,这样他推算出地球的半径约为6376公里.

    或者用向心力与速度关系的公式测出.