y = -(√3)x/3 + 1
x = 0, y = 1, B(0, 1)
y = 0, x = √3, A(√3, 0)
AB = √(3 + 1) = 2
AC = AB = 2 即C与直线的距离为2,
△ABP的面积与△ABC的面积相等, 二者有共同的底(AB),所以只须AB上的高相等即可.即P与直线的距离也是2.
y = -(√3)x/3 + 1可变为(√3)x/3 + y - 1 = 0
P与直线的距离d = 2 = |(√3)a/3 + 1/2 -1|/√(1/3 + 1) = |a/√3 -1/2|/√(4/3)
|a/√3 -1/2| = 4/√3
|a - √3/2| = 4
a < 0, -a+√3/2 = 4
a = √3/2 -4