证明:(1)
∵在△BIC中,∠BIC+∠IBC∠ICB=180°
∴∠BIC=180°—(∠IBC+∠ICB)
又∵BE平分∠B,CF平分∠C,
即∠IBC=1/2∠ABC,∠ICB=1/2∠ACB
∴∠BIC=180°—1/2(∠ABC+∠ACB)
(2)
∵在△ABC中,∠A+∠ABC+∠ACB=180°
∴∠ABC+∠ACB=180°-∠A
代入上式
∠BIC=180°—1/2(∠ABC+∠ACB)
=180-1/2(180°-∠A)
=90°+1/2∠A
即 :∠BIC=90°+1/2∠A