注:一定要用完整的数学归纳法解题

2个回答

  • 1.

    当n=2时,

    1/3+1/4+1/5+1/6=57/60=19/20>5/6

    设当n=k时,不等式成立

    1/(k+1)+1/(k+2)+……+1/3k>5/6

    当n=k+1时

    1/(k+1+1)+1/(k+1+2)+……+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)

    =1/(k+1)+1/(k+2)+……+1/3k+[1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1))]

    1/(k+1)+1/(k+2)+……+1/3k>5/6

    1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)>0

    (因为1/(k+1)=3*1/(3k+3))

    所以当n=k+1时

    1/(k+1+1)+1/(k+1+2)+……+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)>5/6

    2.

    当n=5时

    2^5=32>5^2

    设当n=k时成立,2^k>k^2

    当n=k+1时

    2^(k+1)=2^k+2^k>2*k^2

    (k+1)^2=k^2+2k+1(k+1)^2