f(n)=sin nπ/4的周期是T=2π/(π/4)=8
又f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)
=(√2/2)+1+(√2/2)+0+(-√2/2)+(-1)+(-√2/2)+0
=0
∴ 连续8项之和为0
2011=251*8+3
∴ f(1)+f(2)+.+f(2011)
=f(1)+f(2)+f(3)+[f(4)+.+f(2011)]
=(√2/2)+1+(√2/2)+ 0*251 (后面的8个8个组合,都是0)
=√2 +1
f(n)=sin nπ/4的周期是T=2π/(π/4)=8
又f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)
=(√2/2)+1+(√2/2)+0+(-√2/2)+(-1)+(-√2/2)+0
=0
∴ 连续8项之和为0
2011=251*8+3
∴ f(1)+f(2)+.+f(2011)
=f(1)+f(2)+f(3)+[f(4)+.+f(2011)]
=(√2/2)+1+(√2/2)+ 0*251 (后面的8个8个组合,都是0)
=√2 +1