设角A为a 则角B为2a 通过C做CD 垂直于AB 于D 点
则 边 DC=sin(2a) BD=cos(2a) 在直角三角形ADC中 AC=CD/[sin(a)]
AD=CD/tan(a) 既 AD=CD*cos(a)/sin(a) 则 cos(a)=AD*sin(a)/CD
AC/cos(a)={CD/[sin(a)] }/{AD*sin(a)/CD}=(CD^2)/{AD*[sin(a)]^2}
上式带入各项化简得:=CD/{[sin(a)]*[cos(a)]}=sin(2a)/[sin(2a)/2]=2