因为任意x,y∈R,满足f(x+y)+f(x-y)=2f(x)f(y),
令 x=y=0则 2f(0)=2[f(0)]^2
因为f(0)≠0
所以上面等式两边约去f(0)后得 f(0)=1
令x=y=π/2
有 f(π/2+π/2)+f(0)=2[f(π/2)]^2=0
所以f(π)=-1
9
因为任意x,y∈R,满足f(x+y)+f(x-y)=2f(x)f(y),
令 x=y=0则 2f(0)=2[f(0)]^2
因为f(0)≠0
所以上面等式两边约去f(0)后得 f(0)=1
令x=y=π/2
有 f(π/2+π/2)+f(0)=2[f(π/2)]^2=0
所以f(π)=-1
9