a(n+1)=2an+1即
a(n+1)+1=2(an+1)=2^n(a1+1)=2^(n+1)
所以
a(n+1)=2^(n+1)-1
an=2^n-1
a1/a2+a2/a3+…+an/a(n+1)
=1/3+3/7+...+(2^n-1)/[2^(n+1)-1]
n/2-0.5{1/3+1/6+...+1/[2^(n+1)-2^(n-1)]+1/[2^(n+1)-2^(n-1)]}
=n/2-1/3
a(n+1)=2an+1即
a(n+1)+1=2(an+1)=2^n(a1+1)=2^(n+1)
所以
a(n+1)=2^(n+1)-1
an=2^n-1
a1/a2+a2/a3+…+an/a(n+1)
=1/3+3/7+...+(2^n-1)/[2^(n+1)-1]
n/2-0.5{1/3+1/6+...+1/[2^(n+1)-2^(n-1)]+1/[2^(n+1)-2^(n-1)]}
=n/2-1/3