a(n+1)平方-a(n+1)*a(n)-2a(n)平方=0
(a(n+1)-2a(n))*(a(n+1)+a(n))=0
依题意,a(n)>0
则原方程化为a(n+1)-2a(n)=0————方程1
又依题意,有2*(a(3)+2)=a(2)+a(4)——————方程2
分别把n=2、n=3代入方程1
得a(3)=2a(2)
a(4)=2a(3)
与方程2联解可得
a(2)=4
由方程1,设数列的通项为b*2^(n-1)
又a(2)=4
所以数列{an}的通项为2^n
2、
设F(n)=S(n)+n*2^(n+1)
F(n)-F(n-1)=n*2^(n+1)
则F(n)-F(n-1)为等比数列
后面的你算一下吧,我忘了等比数列的和的公式了……