原式=limn→∞ n/(n+1)*limn→∞ [3^(n+1)+(-2)^(n+1)]/[3^n+(-2)^n]
=limn→∞ 1/(1+1/n)*limn→∞[3-2*(-2/3)^n]/[1+(-2/3)^n]
=[1/(1+0)]*[(3-0)/(1+0)]
=1*3
=3.
原式=limn→∞ n/(n+1)*limn→∞ [3^(n+1)+(-2)^(n+1)]/[3^n+(-2)^n]
=limn→∞ 1/(1+1/n)*limn→∞[3-2*(-2/3)^n]/[1+(-2/3)^n]
=[1/(1+0)]*[(3-0)/(1+0)]
=1*3
=3.