求极值 大一微积分

1个回答

  • 你求导数怎么用这么奇怪的递归函数?

    x^x = e^(xlnx)

    d(x^x)/dx = de^(xlnx)/dx = e^(xlnx) (lnx + 1) = x^xlnx + x^x

    d((1-x)^(1-x))/dx = -(1-x)^(1-x)ln(1-x) - (1-x)^(1-x)

    df(x)/dx = (1-x)^(1-x)d(x^x)/dx + x^xd(1-x)^(1-x)/dx

    = (1-x)^(1-x)(x^xlnx + x^x)+x^x[-(1-x)^(1-x)ln(1-x) - (1-x)^(1-x)] =0

    (1-x)^(1-x)(x^xlnx + x^x) = x^x[(1-x)^(1-x)ln(1-x) +(1-x)^(1-x)]

    (1-x)^(1-x)(lnx +1) = (1-x)^(1-x)ln(1-x) +(1-x)^(1-x)

    lnx = ln(1-x)

    显然x=0.5时取极值