(1-1)/2^1+(2-1)/2^2+(3-1)/2^3+...+(100-1)/2^100
=0/2^1+1/2^2+2/2^3+.+99/2^100
=1/2^2+2/2^3+.+99/2^100
令s=1/2^2+2/2^3+.+99/2^100
s/2=1/2^3+2/2^4+.+99/2^101
s-s/2=1/2^2+1/2^3+.+1/2^100-99/2^101
s/2=1/4*[1-(1/2)^99]/(1-1/2)-99/2^101
s/2=1/2*[1-(1/2)^99]-99/2^101
s/2=1/2-1/2^100-99/2^101
s/2=1/2-2*1/2^101-99/2^101
s/2=1/2-101/2^101
s=1-101/2^100
即(1-1)/2^1+(2-1)/2^2+(3-1)/2^3+...+(100-1)/2^100=1-101/2^100