当a^+4b^-4a+4b+5=0时,求(a/a-b——a^/a^-2ab+b^)/(a/a+b_a^/a^-b^)的值

3个回答

  • a²+4b²-4a+4b+5=0

    (a²-4a+4)+(4b²+4b+1)=0

    (a-2)²+(2b+1)²=0

    两个平方数的和为0,这两个数都是0

    所以

    a-2=0

    2b+1=0

    a=2,b=-1/2

    你后面的式子,看着眼晕,猜着做做吧,如果不对,你自己把a,b代入吧

    [a/(a-b)-a²/(a²-2ab+b²)]/[a/(a+b)-a²/(a²-b²)]

    =[a(a-b)/(a-b)²-a²/(a-b)²]/[a(a-b)/(a²-b²)-a²(a²-b²)]

    =[(a²-ab-a²)/(a-b)²]/[(a²-ab-a²)/(a²-b²)]

    =[-ab/(a-b)²]/[-ab/(a²-b²)]

    =(a²-b²)/(a-b)²

    =(a+b)/(a-b)

    =(2-1/2)/(2+1/2)

    =(3/2)/(5/2)

    =3/5