解题思路:根据函数y=f(x-1)的图象关于点(1,0)对称,可知函数是奇函数,再利用在R上的减函数,转化为具体的不等式,故可解.
根据函数y=f(x-1)的图象关于点(1,0)对称,可知函数是奇函数,所以由f(x2-2x)+f(2y-y2)≤0得f(x2-2x)≤f(-2y+y2),∵在R上的减函数y=f(x),∴x2-2x≥-2y+y2,∴x≥y或x+y≤2,∵1≤x≤4,∴−
1
2≤
y
x≤1,故选D.
点评:
本题考点: 函数单调性的性质;函数恒成立问题.
考点点评: 本题主要考查函数的单调性与奇偶性,利用函数为奇函数将不等式等价变形,利用单调性,转化为具体的不等式,要注意细细体会