证明:(1)连接BC,OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠B+∠BAC=90°,
∵直线CD与⊙O相切于点C,
∴∠ACD=∠B,∠OCD=90°,
∵AD⊥CD,
∴∠CAD+∠ACD=90°,
∴∠DAC=∠BAC;
(2)∵cos∠BAC=
3
5 ,
∴
AC
AB =
3
5 ,
∵AC=6,
∴AB=10,
故⊙O的直径为10.
证明:(1)连接BC,OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠B+∠BAC=90°,
∵直线CD与⊙O相切于点C,
∴∠ACD=∠B,∠OCD=90°,
∵AD⊥CD,
∴∠CAD+∠ACD=90°,
∴∠DAC=∠BAC;
(2)∵cos∠BAC=
3
5 ,
∴
AC
AB =
3
5 ,
∵AC=6,
∴AB=10,
故⊙O的直径为10.