1.a_n={0 当n=2m时
{[(-1)^m]*[1/(2m+1)] 当n=2m+1时
2.因为(n+1)A2(n+1)-nA2n+A(n+1)An
=n[A2 (n+1)-A2n]+A2 (n+1)+A (n+1) An
=n[A (n+1)+An]*[A (n+1)-An]+A (n+1)*[A (n+1)+An]
=[A (n+1)+An]*[nA (n+1)-nAn+A (n+1)]
所以(n+1)A2(n+1)-nA2n+A(n+1)An=0
当且仅当A (n+1)+An=0或nA (n+1)-nAn+A (n+1)=0
而An是正项数列
所以A (n+1)+An=0是不可能的.
故nA (n+1)-nAn+A (n+1)=0
即A (n+1)=[n/(n+1)]*An
因此,An=[(n-1)/n]*[A(n-1)]
=[(n-1)/n]*[(n-2)/(n-1)]*[A(n-2)]
=[(n-2)/n]*[A(n-2)]
=...
=(1/n)*A1
=1/n
从而,通项公式An=1/n