1.写出数列1,0,-1/3,0,1/5,0,-1/7,0,……的通项公式.

2个回答

  • 1.a_n={0 当n=2m时

    {[(-1)^m]*[1/(2m+1)] 当n=2m+1时

    2.因为(n+1)A2(n+1)-nA2n+A(n+1)An

    =n[A2 (n+1)-A2n]+A2 (n+1)+A (n+1) An

    =n[A (n+1)+An]*[A (n+1)-An]+A (n+1)*[A (n+1)+An]

    =[A (n+1)+An]*[nA (n+1)-nAn+A (n+1)]

    所以(n+1)A2(n+1)-nA2n+A(n+1)An=0

    当且仅当A (n+1)+An=0或nA (n+1)-nAn+A (n+1)=0

    而An是正项数列

    所以A (n+1)+An=0是不可能的.

    故nA (n+1)-nAn+A (n+1)=0

    即A (n+1)=[n/(n+1)]*An

    因此,An=[(n-1)/n]*[A(n-1)]

    =[(n-1)/n]*[(n-2)/(n-1)]*[A(n-2)]

    =[(n-2)/n]*[A(n-2)]

    =...

    =(1/n)*A1

    =1/n

    从而,通项公式An=1/n