在三角形ABC中,点D在BC边上,AD=33,sin角BAD=5分之13,cos角ADC=3分之5.

1个回答

  • 这个题目出的,真是,求什么也没写清楚,SIN角BAD和COS角ADC也居然大于1了,应该是5/13和3/5吧,我估计你应该是求AB的长吧.

    根据COS角ADC=3/5,则说明角BAD、角B和角ADE均为锐角.

    sin∠BAD=3/5,所以cos∠BAD=√(1-(3/5)^2)=4/5,

    cos∠ADC=5/13,所以sin∠ADC=√(1-(5/13)^2)=12/13,

    因为∠B=∠ADC-∠BAD,

    所以sin∠B=sin∠ADC*cos∠BAD-cos∠ADCsin∠BAD

    =12/13*(4/5)-5/13*(3/5)=33/65,

    因为∠ADB+∠ADC=180°

    所以sin∠ADB=sin∠ADC=12/13,

    因为sin∠B/AD=sin∠ADB/AB

    所以AB=AD*sin∠ADB/sin∠B

    =33*12/13/(33/65)=60