是单元素集设A={t},则f(x)-x=(x-t)²,f(x)=(x-t)²+x
对于B:x=[f(x)-t]²+f(x)=[(x-t)²+x-t]²+(x-t)²+x
∴[(x-t)²+(x-t)]²+(x-t)²=0
∵[(x-t)²+(x-t)]²>=0,(x-t)²>=0
∴[(x-t)²+(x-t)]²=(x-t)²=0
只有x=t一个解
∴B={t}=A
是单元素集设A={t},则f(x)-x=(x-t)²,f(x)=(x-t)²+x
对于B:x=[f(x)-t]²+f(x)=[(x-t)²+x-t]²+(x-t)²+x
∴[(x-t)²+(x-t)]²+(x-t)²=0
∵[(x-t)²+(x-t)]²>=0,(x-t)²>=0
∴[(x-t)²+(x-t)]²=(x-t)²=0
只有x=t一个解
∴B={t}=A